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The first observation in an organic medium and DFT calculation
of the TMM radical anion generated via a single electron

reduction of a methylenecyclopropane
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Abstract—c-Irradiation of 2,2-diphenyl-1-methylenecyclopropane (3) in a degassed 2-methyltetrahydrofuran glassy matrix at 77 K
gave an intense UV/vis absorption band with kab at 496 nm. This result and calculations based on density functional theory for its
radical anion 3�� and the corresponding trimethylenemethane radical anion (2��) strongly suggest that single electron reduction of 3
followed by ready ring opening affords 2��, whose molecular geometry is largely twisted (h = 45.5�), and the negative charge and
spin are localized mainly in the diphenyl methyl and allyl moieties, respectively.
� 2006 Elsevier Ltd. All rights reserved.
Since Dowd first generated the parent trimethylene-
methane (TMM, 1�� in Chart 1),1 various neutral TMM
derivatives have been generated and studied from a vari-
ety of different perspectives.2 Miyashi and Roth3 were
the first to generate a TMM radical cation derivative,
(2�+), via a photoinduced electron-transfer reaction using
2,2-diphenyl-1-methylenecyclopropane (3), and Ikeda
and Miyashi4 confirmed its reaction mechanism, mole-
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Chart 1. A list of TMM derivatives and structurally related
compounds.
cular geometry (largely twisted, h � 44�, vide infra),
and electronic structure (considerably divided) in spec-
troscopic, calorimetric, and semi-empirical calculation
studies using its bis(4-methoxyphenyl) derivative.5

The generation of 2�+ from 3 is responsible for the C-2–
C-3 bond (Chart 1) cleavage of 3�+ induced by ejection
of an electron from the highest occupied molecular orbi-
tal (HOMO) of 3 with bonding character. In other
words, lowering the bond order of 3�+ holds the key to
produce 2�+. An alternative method of lowering the
bond order is to inject an electron into the lowest unoc-
cupied molecular orbital (LUMO) with antibonding
character. Namely, 3 should have the potential to gener-
ate the corresponding TMM radical anion (2��) via a
single electron reduction.

This concept is of interest because there are few studies
of the parent TMM radical anion (1��) or its derivatives.
As far as we know, the sole example is the nonreductive
generation of 1�� using the reaction of 3-(trimethylsilyl)-
2-(trimethylsilylmethyl)propene with fluoride ion and
molecular fluorine in the gas phase by Squires, Lineber-
ger, and co-workers,6 and there is no example of their
generation or observation in an organic medium. There-
fore, to test this concept, we conducted c-irradiation of 3
in a 2-methyltetrahydrofuran (MTHF) glassy matrix at
77 K, which is a general method for generating radical
anions. Here, we report the first isolation of TMM
radical anion derivatives, that is 2��, in an MTHFmatrix,
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Figure 2. Bond length (dC-2–C-3)-dependent changes in the relative
potential energy (DE) in the course of ring opening from 3�� to 2��

calculated using UB3LYP/cc-pVDZ.
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together with its molecular geometry and electronic
structure evaluated using density functional theory
(DFT) calculations at the UB3LYP/cc-pVDZ level of
theory.

A degassed MTHF glassy matrix of 3 (5 mM) was c-
irradiated with a 60Co source at 77 K.7 As shown in Fig-
ure 1, an intense absorption band appeared with kab at
496 nm. Two assignments for the 496-nm band are
possible: the precursor radical anion 3�� and the TMM
radical anion 2�� generated via 3�� (Scheme 1). For
comparison, 1,1-diphenylcyclopropane (4, 5 mM) and
2,2-diphenylpropane (5, 5 mM) were similarly c-irradi-
ated in degassed MTHF glassy matrices at 77 K. As a
result, neither 4�� nor 5�� had any significant absorption
bands in the 300–600 nm region.7,8 Conversely, the 1,1-
diphenylethyl anion (6�) has an absorption band with
kab = 477 nm in cyclohexylamine,9 which is the sole
study on the absorption band of 6�. These findings
strongly suggest that the observed absorption band
(kab = 496 nm, Fig. 1) is assigned to the TMM radical
anion 2�� rather than 3�� and that its negative charge
and spin are considerably localized in the diphenylm-
ethyl (subunit I) and allyl (subunit II) moieties (see 2��

in Chart 1), respectively (vide infra). However, some
3�� may still remain in the matrix though there is no
spectroscopic evidence for 3��, unfortunately. Remem-
ber that 3�� is not expected to have an absorption band
in the 300–600 nm region, similar to 4�� and 5��.

To gain insight into the ring opening process from 3��

to 2��, the molecular geometry and electronic struc-
ture, we performed DFT calculations at the UB3LYP/
cc-pVDZ level.10,13 Figure 2 shows the C-2–C-3 bond
length (dC-2–C-3, see Chart 1)-dependent change in the
relative potential energy (DE) for ring opening. In Fig-
ure 2, the leftmost and rightmost points with dC-2–C-3 =
1.58 and 2.52 Å are for the optimized 3�� and 2��,
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Figure 1. UV/vis absorption spectrum observed after c-irradiation of 3
(5 mM) in an MTHF glassy matrix at 77 K.
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Scheme 1. Possible generation of the TMM radical anion 2�� by c-
irradiation of 3 in an MTHF glassy matrix at 77 K.
respectively. The DE value increased to reach a maxi-
mum at dC-2–C-3 � 1.8 Å, and then decreased monotoni-
cally, as dC-2–C-3 increased from 1.58 to 2.52 Å. Estimating
from DE, the ring opening of 3�� to give 2�� proceeds
readily with a relatively small elongation barrier (ca.
2 kcal mol�1) and the release of a large amount of en-
ergy (ca. 28 kcal mol�1). This finding rationalizes our
assignment of the spectrum observed in the c-irradiated
MTHF glassy matrix of 3 (Fig. 1, vide supra). Again,
note that some 3�� may still survive the calculated low
elongation barrier at 77 K.

Figure 3 shows the optimized molecular geometry of
2��. The dihedral angles, h and h 0, of C-3–C-1–C-2–C-
5 and C-3–C-1–C-2–C-7 (Fig. 3d) were optimized to
be +45.5� (Fig. 4) and �134.5�, respectively, while sim-
ilar angles, x and x 0, of C-1–C-2–C-5–C-6 and C-1–C-
2–C-7–C-8 were both calculated to be +25.3�. The
Figure 3. Molecular geometry of 2�� optimized using UB3LYP/cc-
pVDZ: (a) top, (b) front, and (c) side views. (d) Atom notation and
definition of the dihedral angles (h, h 0, x, and x 0) of 2��.



5

4

3

2

1

0

806040200
θ / °

∆E
 / 

kc
al

 m
ol

–1

Figure 4. Potential energy (DE) curve of 2�� along the dihedral angle
(h) calculated using UB3LYP/cc-pVDZ.
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sum of calculated internal angles \C-1–C-2–C-5 =
118.6�, \C-5–C-2–C-7 = 122.8�, and \C-7–C-2–C-1 =
118.6�, was 360�, suggesting the sp2-like hybridization
of C-2 in 2��. In fact, it was suggested that the two r
bonds of the C-2 carbon of 2�� are hybridized with
(s,p) = (34.20%, 65.74%) in the directions of C-5 and
C-7, whereas in the direction of C-1, the residual r bond
of C-2 carbon takes an (s,p) = (31.52%, and 68.42%)
hybridization.14 Note that C-2 of 2�� is sp2-like in
hybridization while the methyl anion, CH�

3 , has an sp3

hybridized carbon. This phenomenon is due to both
electronic and geometric factors. The former is a conju-
gation of the negative charge to the two phenyl groups
of 2��, while the latter is the easing of potential steric
hindrance between the two phenyl groups on C-2 with
a hypothetical sp3 hybridization.

These findings, especially h and h 0, suggest that the
ground state of 2�� is largely twisted. The optimized
C-1–C-2 bond length (dC-1–C-2), 1.49 Å, is slightly longer
than the C–C bond length (dC–C = 1.47 Å) of the
orthogonal ethylene.15 Therefore, the C-1–C-2 bond of
2�� possesses a normal C–C single bond character. Fur-
thermore, judging from the DE of 2�� along the h coor-
dinate (Fig. 4), the rotation barrier around the C-1–C-2
bond is lesser than 4 kcal mol�1 at h � 0�, which corre-
sponds to that of the normal C–C single bond (3–
6 kcal mol�1), indicating that the C-1–C-2 bond of 2��

does not have the typical nature of a double bond.

Finally, we examined the electronic structure using the
sum of the partial spin (q) and charge (q) density,

P
q

and
P

q, respectively, computed with DFT calculations,
as shown in Figure 5.16 The values,

P
q = �0.025 andP

q = �0.782 for subunit I, and
P

q = +1.025 andP
q = �0.218 for subunit II suggest that the negative
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Figure 5. The sum of the partial spin (q) and charge (q) density of
subunits I and II in 2��, respectively.
charge and spin are mainly localized in subunits I and
II, respectively. These calculation results are in accord
with the conclusion based on absorption spectroscopy.

In conclusion, we first observed the TMM radical anion
derivative, that is 2��, generated in organic medium
using c-irradiation of 3 in an MTHF glassy matrix at
77 K. The C-2–C-3 bond cleavage of 3�� results from
lowering the bond order triggered by an electron injec-
tion to the LUMO with antibonding character. The
DFT calculation at the UB3LYP/cc-pVDZ level sug-
gests that 2�� has a largely twisted molecular geometry
and a considerably localized electronic structure. Sub-
units I and II are largely twisted with each other around
the C-1–C-2 bond. The negative charge and spin are
mainly distributed to subunits I and II, respectively.
These phenomena are also similar to the case of 2�+:
the corresponding subunits I and II are largely twisted
with each other around the C-1–C-2 bond, and the
positive charge and spin are mainly distributed to the
corresponding subunits I and II, respectively.17 This
work is significant from the perspective of providing a
new system of radical anion rearrangement, because
such reaction systems are not documented very often,18

as compared to those of radical cation rearrangements.
Further studies (e.g., comparison with the parent 1��)
are now in progress, and will be published elsewhere.
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